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ABSTRACT

This report discusses several features of the combined refraction-

diffraction model for Stokes waves (developed by Kirby, 1983) which limit its

applicability in shallow water. Chapter 2 discusses a proposed dispersion

relation for waves in arbitrary water depth, which provides a smooth patch

between the lowest order Stokes dispersion relation and an approximate

dispersion relation for shallow water, given originally by Hedges (1976).

Chapter 3 extends the large-angle approximation of Kirby (1983) to the case of

waves on currents, in order to allow for the calculation of waves which are

refracted or diffracted to angles which deviate significantly from an

initially preferred direction of propagation, due to the combined effect of

varying depth and current. Finally, Chapter 4 provides some calculations of

wave fields around surface-piercing islands, in order to illustrate the effect

of wave brealking and the use of a thin-film approximation for dry areas in the

model.
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Chapter 1. Introduction

Recently, a series of papers and reports (Yue and Mel, 1980; Kirby, 1983,

1984; Kirby and Dalrymple, 1983a,b, 1984; Liu and Tsay, 1984) have detailed

the derivation of a parabolic model for the forward scattered component of a

tralin of time-periodic, weakly nonlinear Stokes waves. In its most general

form, the model is applicable to the study of wave propagation through regions

with both slowly varying depth and ambient currents. For the case without

currents, good agreement between experiment and theory has been demonstrated

(Kirby and Dalrymple, 1984 and Liu and Tsay, 1984) for cases where Stokes

theory is strictly valid. eS

The development of a wave model designed for practical application to

realistic modelling problems poses a number of physical problems which do not

fit w' hin the theoretical context of the Stokes wave model. Several of these
0

prolems are discussed in the present report, and methods for including their

effects in the combined refraction-diffraction model are proposed.

In Chapter 2, the problem of matching dispersion relations between Stokes
I

and shallow water waves is discussed, and a formulation is proposed which

smoothly matches the dispersion relation for Stokes waves to an approximate

dispersion relation due to Hedges (1976) for shallow water. The proposed
S

matching alleviates the need for extendlng approximate calculations into

deeper water wh.on their use in shallower water is dictated. Further, the

)rovio; on of; a cont tinu Ivly-varving formula for all water depths insuires a

smooth varitilon in both plhise and group velocities from deep to shallow

water, olimlnfat n, the rogons Of discontLinnitv between Stokes theory and tho

full criodal wav theory.

r I =" lI" -,d d ""'I Ih i III I llI / I I~llI
II I

dI~i ~ I - . .. . .. . . . . ".... . - 0



In Chapter 3, a formulation for waves propagating at not-so-small angles

to tho preferred direction and in the presence of an ambient current is given
SI

in full. The present derivation follows the scheme indicated by Kirby (1983),

hut the material presented here was not pursued to the point of completeness

ial the former report.

FinilIlv, Chapter 4 presents an application of the breaking wave model S.
d,!scrit,,d hv Kirhv (1983) and Daily, Dean and Dalrymple (1984) to the case of

.a <urt z< a r.un in inland. Since this chapter is in the form of a full

m:iuscript, ,discussion of the physical problem is left to the chapter

i nt robdoct ion.

-.,
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Chapter 2. A Modification of the Nonlinear Dispersion

Relation for Shallow Water Waves

A central problem in present efforts at modelling waves in coastal

re.,ions consists of the mismatch in wave properties as waves propagate from an

inter-iendiat, depth region, in which Stokes theory is valid, into the nearshore

zone, where waves ire better described by the Boussinesq equations. Several

theories tor large amplitude waves in arbitrary depth (Dean, 1965; Rienecker

and Fenton, 1981, for example) provide a bridge across the division between

Stokes thoeory and cnoidal theory; these theories are computationally intensive

and are typically used to accurately describe the properties of a single

wave. For the computat ion of waves propagating through large areas of

vriahIe depth, the use of the theories for waves of small amplitude is

computationally more feasible at present; formulations of this type are the

snhect of the present report.

2.1. Review of Stokes Theory

Recently, pr- ress has been made in modelling the propagation of small

amplitude Stokes ,'aves Jue to the simplicity of the iispersion relation

incorporating the lowest-order nonlinearity. Following Whithamn (1967), this

reLatin :nay he written as

2 2 2
'i, I + (ka)D(kIch) (2.1)

wh, re

2

gkt anhkh (2.2)

i. the lfrieir dlsper~iorn rolatton, and where

3



2
D(kh) - cosh(4kh) + 8 - 2 tanh (kh) (2.3)

8 sinh 4(kh) .3)

(2.1) may be used to determine either , or k given a, the local wave

aplitude, and h. Yue and Mei (1980) demonstrated that (2.3) may be

incorporated in the lowest order parabolic approximation of the lelmholtz

equat ion, yielding

3
w k

2ik A + A - --- DJA A = 0 (2.4)
g

where \ is the complex amplitude of a wave described by

ReiAeikox - ut]

The re;ulting equation is in the form of a cubic Schrodinger equation for wave

ow lmti n in the x-directi n. This formulation has been extended to the case

of waves on currents in a slowly varying domain, yieldirn- the equation (Kirby;

1983, 1984):

C + U

(C + IJ)A + VA + +
'x v 2 x y

I 3 2
2 -- , DI A = (2.5)

who ro

ci + ki, (2.6)

1 = (,ktnnhkh 
(2.7)

4A
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A = 0; lateral boundaries (2.28)

The computational model used in the present examples is obtained from

(3.28 - 29) by setting U = (U,V) = 0, neglecting any imposed ambient

current. We further adopt the lower order approximation of Radder (1979) and

set P1 
= 0 in (3.28).

Data from the laboratory experiment of Berkhoff et al (1982) are
S

available for the labelled transects I through 8 indicated in Figure 2.2. The

computational domain was discretized into square grids Ax = Ay = grid

spacing,), and the grid scheme was established so that grid rows coincided with
S

the measurement transects. Grid size was decreased until the point was

reached where further reduction did not affect model predictions

sinificantly. The final numerical calculations were performed using a space

of Ax = 0.25 m. Results for wave amplitude normalized by the incident wave

ampI iltilde are presented in Fi cre 2.3 in the form of a contour plot for the

rerion of the shoal and focus. The results for the Hedges model are
S

qualitativly similar to the Stokes waves results presented in Kirby and

Dalrvmple (1984), and agreement between the Stokes and Hedges results is

d,firtIv htter than between either nonlinear model and linear theory.

P ot,; *f nr~o i ,, aImplitude for the labelled transects I - 8 in Figure

2.2 ir , , i i i.',, - h, respectively. The plots include results of

tt,, lht ' 2 ",S, , t.>- mod,-] and the laboratory data of Berkhoff et al

15

Sl



where A. = 0.0232 m is the amplitude of the incident wave. The wave period

T I sec. Referring to Figure 2.2, we establish slope-oriented coordinates

C ,y } which are related to the computational coordinates jx,y} according

to:

x = (x- 10.5)cos 200 - (y - 10)sin 200 (2.24a)

y = (x - 10.5)sin 200 + (y - 10)cos 200 (2.24b)

I I

The origin {x , y} = {0,0} corresponds to the center of the shoal. The slope

is described by:

0.45 m, x < - 5.82 m (2.25a)

h

0.45 - 0.02 (5.82 + x )m, x > - 5.82 m (2.25b)

The boundary of the elliptic shoal is given by:

'2 '2
+ I 4) = 1 (2.26)

;ind the depth in the shoal region is modified according to:

2 ' 2 1/2
hslope - 0.5[1 - Y-5) + 0.3 (2.27)

resulting in a depth h(x = 0, y = ) = 0. 1332 Tn.

The lateral boundaries at y 0, 20 m are open, but are far enough from

the region of the shoal so that we can specify reflective boundary conditions

on the lateral boundaries 14
-1
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definitive laboratory data which shows the direct effect of amplitude

dispersion in intermediate depth. For this reason, we include here a

comparison of the refraction-diffraction calculations based on Hedges form of

the dispersion relation, and data taken from the experiments described by

Berkhoff et al (1982). This data set has already been used to check the

linear form of the CREDIZ model (Berkhoff et al, 1982), and a nonlinear model

based on the Stokes dispersion relation (Kirby, 1983; Kirby and Dalrymple,

1984). The reader is referred to the previous literature for details of the

experiment. The work of Kirby (1983) and Kirby and Dalrymple (1984) compare

the Stokes model to results obtained using linear theory, and establishes that

the Stokes model provides a detailed, accurate reproduction of the

experimental data. We therefore take the view in the remainder of this

section that the Stokes wave model represents the "correct" wave model for

waves in intermediate water depth (Ur < 0(0)). We will therefore be primarily

interested in how much discrepancy between numerical and experimental results

is introduced by using approximate dispersion relations. We summarize the

important points of the experimental arrangement here. The experimental

topography consists of an elliptic shoal resting on a plane sloping bottom

with a slope of 1:50. The plane slope rises from a region of constant depth

h = 0.45 m, and the entire slope is turned at an angle of 20* to a straight

wave paddle. Bottom contours are shown in Figure 2.2 along with the chosen

co ipitatton.il domain, which is indicated by the dashed line surrounding the

contours. The offshore boundary of the computational domain is chosen so that

water depth L; constant along x = 0. The initial condition for the wave then

corr,4p()nI t,) thv ,i formn wave train e enerated at the wave paddle; we set:

A(x (),y) = A (2.23)

12
A
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w-/gk = (I + c/2kh)tanh(kh + e/2) (2.20) = -"

corresponding to Walker's approximation, and

2
w /gk = tanh(kh + r) (2.21)

corresponding to Hedges approximation. The variation is over values of kh for

fixed values of wave steepness 6 = ka; curves are given for values of E = 0.1,

0.2, 0.3 and 0.4. The results show that the difference between Walker's

approximate form and linear theory remains pronounced for large values of kh,

while Hedges approximation approaches the linear result move rapidly. The

common shallow water limit of the two relations for small a/h is seen to break

down for finite values of a/h, with (2.20) reducing to

2/g 2
w /gk= kh + + c /4kh (2.22)

where the last term becomes large for any fixed e as kh + 0. It seems that

Booij's conclusion that Hedges' approximation is preferable to Walker's based

on the deep water behavior extends as well to the shallow water limit, due to
2!

the O(e2 ) term which cannot be made arbitrarily small in shallow water.

Hedges (1976) approximation has been used to form the basis of nonlinear

effects in at least one operational refraction-diffraction model; the model 0

CREDIZ developed by the DeIft Hydraulics Laboratory in conjunction with the

Rijkswaterstaat. A recent calibration of this model is described in

Dingemanns (1983) and Dingremanns et al (1984). To date, no adequate

comparison has ben made between the approximate nonlinear model and any

9
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Alternatively, Hedges (1976) proposed a similar relation of the form

2
= gk tanh(k[h + a]) (2.16)

Both (2.15) and (2.16) have similar properties in the limits of deep and

shallow water. In shallow water and for a/h small, both formulas lead to a

dispersion relation

2 g2
W = gk (h + a) (2.17)

0

or, equivalently, a phase speed

C = [g(h + a)] 1 (2.18)

This phase speed represents the speed of propagation of a solitary wave of

height H = 2a. The shallow limit of either approximate form is thus

physically reasonable.

In the deep water limit, both (2.15) and (2.16) approach the linear

dispersion relation, as the ratio a/h approaches zero due to increasing water

depth. Booij (1981) has mentioned, without demonstration, that the approach

to the linear form is quite slow if the relation (2.15) of Walker is used.

* Figure 2.1 shows the variation of the right-hand side of the relations

2
= = tanhkh (2.19)gk

0 1

corresponding to linear theory,

8



0

Recently, Liu et al (1985) have shown that refraction-diffraction

calcliations may he performed for regular cnoidal waves using a spectral

approach based on the Boussinesq equation. This method is reasonably simple

to develop, and computations are straight forward and fairly economical due to

the simplicity of the wave-wave interaction coefficients in shallow water.

However, the calculations are highly dependent on the relative phase speeds

and amplitudes of a number of waves in a discrete spectrum, and the method can

not be applied to the present monochromatic model.

Alternatively, several authors have proposed simple modifications to the

linear dispersion relation which are designed to mimic the effect of amplitude

dispersion in shallow water. Based on a large number of laboratory

observations of broken and unbroken waves propagating over a focusing

topography, Walker (1976) proposed that the nonlinear effects in shallow water

could be modelled in a refraction scheme by modifying the predicted linear

phase speed according to

C = C(l + a/h) (2.13)

where "a" is the wave ampl[tude and

1/2
Cz k (gtanhkh/k) / (2.14)

Booli (1981) showed that a dispersion relation equivalent to (2.13) may be

writton 1S

2 gk( I + a tanh(k[h + i-) (2.15)

7
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0.

2.2. Approximate Shallow Water Dispersion

The limitations of the Stokes theory leads to two modelling problems:

1) An alternate theory (cnoidal waves) must be used to describe waves in the

range where

A/h 0();

(kh)2

2) A way must be found to describe the smooth transition of waves from the

Stokes regime into the cnoidal regime.

The first problem results from the limits of validity of the Stokes

theory. The second problem arises due to the fact that wave properties do not

vary smoothly across the division between Stokes and cnoidal waves.

Using the results of cnoidal wave theory, the dispersion relation for

periodic waves may be written as (Flick, 1978)

C (gh) 1/2 (1 + JA f( (2.11)h 1

where
I 3E(m)_

f (M) -(2 EKm) m) (2. 12)

and where E(m) and K(m) are the Jacobean elliptic integrals.

This relation may be used to calculate local values of k in a modelling

scheme. This analytic approach has been used in several refraction schemes

(Chu, 1975; Skovgaard and Petersen, 1977; Headland and Chu, 1984) as a means

for including the effect of shallow water amplitude dispersion. The full

formulation requires a large amount of iterative computation due to the

interrelationship of the wave height H and elliptic parameter m.

6



Here, w is the fixed wave frequency with respect to the stationary domain, and

the wave is assumed to be propagating in the x-direction.

Equations of the form (2.5) (or the large angle, large current extension

described in Chapter 3) are applicable in intermediate depth (kh - 0(1)) and

I are correct in the deep water asymptote (kh + -) under the condition of

kJA << t. In shallow water, the regular expansion in kJA breaks down and is

replaced instead by an expansion to lowest order in kh << 1, JAJ/h << 1, with

the Ursell number

U(l) (2.8)
r (kh)

representing the region where cnoidal and solitary waves are described. The

breakdown in the Stokes theory may be seen by looking at the shallow limit of

(2.3);

D(kh) 9 (kh) -  kh + 0 (2.9)

The ;ingiilariLy in D as kh + 0 is quite severe and overwhelms the computations

if regionz; of the computational domain become too shallow. The dispersion

relation may he arranged to the form

2= 2( +9 (I AL(khr2) (2.10)

Indicating that JAJ/h must remain extremely small as kh + 0, in order for the

Stokes theory to remain valid. This requirement is clearly not applicable in

the vicinity of surfzones, where lAJ/h is typically of 0(l).

5
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2.3. Matching Stokes and Shallow Water Dispersion

The inadequacy of an approximate shallow water dispersion to model

nonlinear effects in intermediate water depth, coupled with the invalidity of

the Stokes model in shallow water, leads to the need for a matched dispersion

relation which predicts the phase speeds of waves smoothly from deep to

shallow water. This problem is central to the prediction of the properties of

shoaling waves.

Goring (1978) has shown that a matching exists between Stokes and cnoidal

waves in the limit of small amplitude, by showing that a regular perturbation

solution of the Korteweg-deVries equation is equivalent to the shallow water

limit of the Stokes solution for general water depth. However, for larger

amplitudes the series solution does not converge, and the solution in terms of

powers of e = ka becomes inappropriate. In effect, as water depth decreases,

the Stokes solution may become invalid before the region of validity of the

cnoidal theory (small kh) is reached. Flick (1978) suggested that it may be

possible to construct a dispersion relation by means of matched asymptotic

expansions; he suggests a relation of the form

W
-=C C (2.29)k Cs c kin

where
20)1/2 1/

C = (I + E: D) (gtanhkh/k)1/2 (2.30)
S*-

is the Stokes phase speed,

C = (gh) 1 / 2 (l + - f(
Sc h
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f (m) = (2 - 3E/m)/K(m) - m)/m (2.31)

is the cnoidal phase speed, and

Ciin = (gh) 1/2( -'(kh) 2  9 a/h 2 (2.32)
6 I6L (kh)mJ "

is both the shallow water limit of (2.30) and the small amplitude

(m + 0) limit of (2.31). The fact that these limits coincide lends further

creedence to the conclusions of Goring (1978). However, in cases where the

small-amplitude limit is inappropriate, (2.32) may not be used directly as a

reasonable approximation. This would seemingly include the majority of

C2
cnoidal wave cases, where the Ursell parameter (a/h)/(kh)2 is 0(1).

For the purpose of inclusion in the monochromatic wave model, we propose

that a dispersion relation of the form

2 = k( I + f (kh)c2D) tanh(kh + f 2 (kh)E) (2.33)

may be constructed in order to model nonlinear effects over a broad range of

depths. Comp.irin (2.33) to the previous forms of the dispersion relation, we

see that the Stoke, wave form is recovered by the choice

f (kh) = 1.

all kh (2.34)

f2 (kh) 0.

whtl the Hed,ro-; model f-; recovered by choosing

21



f (kh) =0.

all kh (2.35)

f 2 (kh) = 1.

The composite model may be constructed hy choosing forms for the arbitrary

functions f, and f2 . In particular, we require that f (kh) + 1 as kh +

1

while f2 (kh) + 0 as kh + -, in order to recover the Stokes wave limit. In

shallow water, we require f2 
+ I as kh + 0, while fl(kh) must be of O(kh 5) or

smaller in order to overcome the ;nilk"lirty in D, which is O(kh- 4). Based on

- these requirements, we h.ave chosen f. and f2 according to

05

f (kh) = tanh kh (2.36)

IiI

4
f 2(kh) = Lkh/sinh(kh) 4  (2.37)

The dispersion relation resulting from these choices is illustrated in

Figure 2.5, where the right-hand sides of the following relations are plotted.

Linear
2 S

- tanhkh (2.38)
gk

Stokes
2 S

22
= (I + C D)tanhkh (2.39)

gk

tHedges

gTk tanh(kh + E) (2.40)

22
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Composite2

g-- = (I + fe2D) tanh(kh + f 2) (2.41)

As in Figure 2.1, results are plotted for a range of kh values, and separate

sets of curves are given for choices of E = 0.1, 0.2, 0.3 and 0.4. An

inspection of each set of curves shows that the composite form (2.41) matches

smoothly to both the Stokes form (2.39) in deeper water and the Hedges form

(2.40) in shallow water. The strong singularity in the Stokes form is also

apparent. The curve corresponding to the composite form typically lies

between the Stokes curve and the Hedges curve, which may or may not intersect

each other.

We remark that the choice of the exponent 4 in (2.37) led to the best

positioning of the composite curve (2.41) with respect to both the Stokes and

Hedges relations, with both higher or lower exponents leading to fairly large

deviations over some portion of the range of kh. The choice of the exponent 5

in (2.36) is of course dictated by the requirement imposed by the singularity

in D.

The composite model was tested by recomputing the example of Berkhoff

et al (1982) using the modified dispersion relation. The dispersion relation

is incorporated directly in the nonlinear Schrodinger equation for complex

amplitude A following the method of Kirby and Dalrymple (1984). The nonlinear

modification to the time-dependent form of the linear mild-slope equation for

velocity potential p at the free surface is given by

7t 7 n (CCg V n + ( 2 k2 + CC= 0 (2.42)

who r P
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2 2 (2.43)- ~F = ~ - (.3
0

and 0 2 is the linear wave frequency squared;

i g 2 ktanhkh (2.44)

2Representing w by (2.33) and letting h he represented as

i(k x - w t)
r,0 0

= e A(x,)e (2.45)

where ko is a reference wave number, reduces (2.42) to the form

CgA + iC (k - k)A + (C)A VN (CCgV A)
g x go0 2 g 2u h g hx 0

to 2 2 tanh(kh + f2klAl)
+ 0 1( + f k 2  tA- 1] A = 0 (2.46)2 --- 1 + I~D tanh kh

This form of the nonlinear model is used to compute results corresponding to

the experimental data. The computational grid and domain is as described in

section 2.2. A parabolic form of (2.46) is obtained by using the scaling

assumption

JA l << 0(iklA [), (2.47)

loading to the neglect of the term (CC Ax) in (2.46). Again, the

compiitational scheme is described in Chapter 3; here we use the choice P1 = 0.

A contour plot of normalized amplitude IAI/A o is given in Figure 2.6.

Tho contours resul ing from calcul]ations using the composite model are closer

26
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in shape to the results of the Stokes model than are the contours of the

Hedges model, as would be expected. Plots of normalized amplitude along the

labelled transects I - 8 are presented in Figure 2.7, where the composite

model results are compared to Stokes model results and laboratory data. The

results of the composite model are generally closer to the Stokes model and to

the data than are the results of the Hedges model, although the discrepancies

in either case are not large, with all models generally showing better

a greement with data than the linear model.

2.4 Conclusions

The present chapter has presented a method for extending the effects of

nonlinear dispersion in a monochromatic Stokes wave model into water depths

which are too shallow for Stokes theory to retain its validity. The proposed

model provides a smooth patch between Stokes theory and an empirical shallow

water relation due to Hedges, with the two separate forms being obtained in

the limit of deep and shallow water, respectively.

Althou-h example calculation show that the differences between the Stokes

model and Hedges model are not large in intermediate water depths, we feel

that the presenL results are preferable to the use of the Hedges relation

alone for several reasons. First, the fact that the Hedges model approaches a

linear mod'-l in deep water implies that discrepancies would inevitably exist

in calcllations which start or extend into fairly deep water. ExistLin g

I ih)ratrv dt i oovors too shallow a depth ringo (anl to,) ,w rani, of wave 01

h '[irhtL ') to ', those discrepancies fully. The prsn.t th,)d prnvl des- :

fl',11im for vi tu mg the empirical snallow watitr ,Td l int.) i n,)r,, reasl;onable

d.'q wat,,r Ii-ui
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Secondly, althouyh the difference between results of the Hedges and

Stok, models is not severe, the errors in phase and group velocitv would be
S

expected to accumulate over long distances for waves propagating in shallow

water. The proposed composite model reduces the small local error in the

Hedges model by mixing the Hedges and Stokes effects together, and would be

expected to produce more accurate results for waves propagating over large

distances.
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. J J .1-- ----

(UV. + iUV.) iAx 2P I P .  2

Ay 4y 2  (Ay) (k + k ) 2Ay

j-1 3 3

1-O

+ pi
(PV PV 1  (3.38)

i

j-1

and where
i V2 1

PV = (p - (3.39)

4(ki -.ki.(p u2 )11 i

4(k i+ l k i )  8(k.+ (p U). -k(p U).i _ L 1 ± 1 1J

( x)(K. + kI) (Ax) ( k + )((p U Uki . + (p 2) i)i2

(3.40)

The remaining term C4 is given by

C4 2w tanh(kh + f2kIAt)

SA + I + fDj tanh kh 1 A
2 21 ahk

(3.41)

which is written out in finite difference form as

c. - ,Iw A. w. Ai+I-
C! 4 tw j A .A

--i+t t+ 1 2 2 tanh(k. h. + f 2. k IA1  I

i + 9 2 1+ i+lJ J AiI
+ I + f 'j i t n k.2 .( A I D

Si+l

3 nhtanh(k 1.. ))

tanh(kh + f k.~~i
12 2 2.-}A

+ I. + f (kl) AID1A

tanh(k. h.)
.1 ,(3.42)
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i+ I1

c I (C + U)~~ + I - Ax(k - k)~ I9 + -) ( A~--~---~1 V)

2iiP+U IU)+ + i tlAx j+ i j+1- i-1 -I

j~wc 2P1  (PV + 2PV + PV
+ Ac3 Ii Ax

+2 i- iI i 2 p (y 1 j+12 -
4Av (k. + k )AV (y

I - .1(3.36)

t Ax i~l iI +1 + UV + LIJV.
C2. - - (V. + V) + J+4-

y 1 4Ay ay 0

41 Vi ai+ i
4iPi J ~ -i 1A 1 o +

2A- IAy I - IAy(k. + k ) a ;~ T+ I.

1 2Ax 2P'1  I lAx (vj+I + PV,)
J2 k I+k )(MV) 2 4A)2) 1 I

- I Ij+I

p-- IN + IT
(LIj + 1'.;1 (3.37)

tAy i

L 0

(V.I l +V )- - I 0.

A ~ ~ ~ ~ ~ + VIk+ki A
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AP2 + + i {uv'§ + UV1  4-l 2UV.4 1

4AV J 4Ay 1+ 1

+4 i a+ + i 1x 1 . + a i

Ay(k. 4-I k) a 1+1
i j±1j~

p3 (UV. + UV.) lx2P 1 Pjx

ya + 1 4 (Ay)2 2 i+1 I 2(A))

1+1 i.+
(PV.1 + PV )

i+1 (3.34)

j+I

SAx 1±1 j ~ uv i~ +1 ' + 2UV 1

j 4Ay j o

4P3 p - u(V + V.) + -I J (Ax.

i+ I 1 t+1 2 rAy, '~ I -
Av(k. + k.)a. a

i j1:-1 
-

P 3 ' (UJV i+ + uvI2P P aAx
+ i A UV) Ax + 2'

Ay(a 4(Ay) (AY) (k.+ + k. 2(Ay)

1-4- i+1
(PV. + Pv.

1 
(3.35)

j+ I
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A. = A(ifAx, jAy) (3. 30)
J

The oomputations proceed by updating values of A from the known "i" row to the

unknown "i+l ' row. Iterations for the nonlinear terms are performed using a ..

repeated implicit calculation as in Kirby (1983).

Using the notation (3.30), (3.28) is written in finite difference form as

CPi A + CP2 i A + CP3 Ai+ l

J J A j+l +  j-

ii i I  i
CI A + C2A jA + C31 A. - 2(Ax)C4. (3.31)] ii j j+ j-l J

where C1, C2, C3, CPI, CP2 and CP3 are known coefficients given by

i+l i

CPI' = (C + U)i - I + iLx(k - k)}+1} + (C + u)i+ 4 jL(AV) .

g J

+i + i+1 ilii~A 14i,'oP 3(uU). -1 k Vj+ V~ -V. _-Vj

(V'i-P (P + .) + P+,1
( k. + K. )'J.1x y

+ - P1 _ - 5[ A× ;. (pvi - 1
J 1+ 2PV i + I + pvi+I")

I ' A+ _ -
-

- 1 a.
J (3.32)

S ' C + "

Ax Vt+1 i Vi+1 V-

2j W Lv + j+ -T I

(3.33)
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C + U
(C + U)A + VA + i(k - k)(C + U)A + + ,A

x Vy x

2 ki AL i 2A- [(p -+ {UV(o ) + Iuv(A) + 2-k J)IA-A

2 -Yl + 22ov i(xx)

+ H A + _{[(p - V2) jy + 2i(OV()
P2 k 2  y ay X

+ 1 (i a -2J(2) +(UAVA ~ A 2 A,
21W a xy y y

i Pl1()y +A = 0 (3.28)i- (V 3( ) H
k 1 y x x

This equation extends the published results in Kirby (1984) and Kirby and

Dalrympe (1983b) to the case of waves propagating at large angles to the

x-direction in the presence of a current. Nonlinearity here is consistent

with the lowest order Stokes formulation of Kirby and Dalrymple (1983a). The

nonlinear term may be directly modified according to the results in Chapter

2. The resulting equation is of the form

tanh(kh + f kJAI)

(C + U)A + f~ + 22 - + ... = 0 (3.29)
g x U)A + 2-- (+ f1  tanh kh -

where f[, f2 and D are functions of kh given by (2.36), (2.37), and (2.3)

respectively. 
.

3.2 Finite Difference Scheme

The finite difference scheme for (3.28) follows directly using the Crank-

N[colson method for performing an implicit update for each row in x. The

notation of Kirby (1983), section 6.2 is retained. We denote x-positions by

"[" superscript; and y-positions by 'j' subscripts. For example: S
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I. 7

where a and a3 are a I and a3 written in terms of A. The first bracketed

term is given by

' ~ -jy i '}
{0' + a(R14)e + k 3

Sj2iU(A) + i(wU)y(A- 2wUk(E- (A

x YY

( - v) (A (k)s ()UV) (A
+ 2i( + i()

oy y yG

A A A
-21k(E - )UV(-) - (uv(-3 ) - (Uv(-,)

A A
+ 3(wU) + 3ik(E - I)(oU) x  } (3.27)

So far, nothing has been dropped besides some second derivatives of

currents. In order to simplify the equation further, we drop the following

terms as being small:

1) Terms in (I - ) multiplying products of current components or

derivatives.

2) Terms with B multiplying derivatives of the ambient current.

We are then left with the form of the equation to be used in the numerical
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0

P 2 - PI(k/k) = 2 - PI + P 1 (1 -Ik/k)

- + P(- (3.25)

Denote C H k/k. It is usually assumed that 6 1; i.e., the wave number

varies only slightly along a grid row. Making this assumption, we may take

1 - c << O(I)j introducing a small parameter. The full equation for A defined

according to

E e" + c.c.
2

is given by
C +U

(C + U)A + VA + i(k k)(C + U)A + ) + A
g x y g 2

k2D A12 w (p V2 ) (A) 
2 A +2 2 - '(P '-

i A A

+ {(uv() xy + (uv(A)}

P1 A+ P~f3av + BR~e- +- I

A (A I'UV A 1
+ ( - 1)kUv()y - "(- y( +)kUVy '- 21[( 1 - )k

2 y aY

-( c)1- .'A-tV) + 2k(I - y ik(I - E)(p -V
2 )-") I

y y y

ik( + UV(- 1y = 0 (3.26)
a yi + 0U x y
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0A

The right-hand side of (3.17) becomes

A A
R. -. S. =(U) +U + - +

P P
P__I '---i '

- I2 R2 (p)e +4 P a1 + P IR (3.21)- k 0 -e I-- I I I -

Evaluating, iP 2 a - (PI/k)%2 give-

P A II p I
iP (wU)(A-- U - () (_V k-I

(3.22)

where

A (WV) + (wU) + 3(+U) ( x  (3.23)

The R.H.S. of (3.17) reduces to

I A I p1 (A 1 AkUV1

R.H.S. = - T (aV)y - -(kUV) i 3

Pq

[iP2 (Rt - (R2)] e- p + P +(a+ Rl(p) e-*

(3.24)

We now need to simplify RI and R. Shifting to the reference phase i defined

in (3.6), we continue to expand all terms in order to eliminate the phase

function 'v and ' . The use of i injects a k in the equation in place of k in

some terms. Note that

39
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will have some contributions like

iP2(>m1) - - M(X) i(P9_ - P) (Mp) 2

These will balance the j } terms above in (3.16) and give the lowest order

diffraction and y-direction transport terms. Terms without y derivatives may

he manipulated simply. In terms of the complex amplitude A , M becomes

(M )e- i(uWU) x~ + i(WV) ( ) +21UAx

-{2~iVp +- [(p - V2 ) y - (UV )y (U ) e

40+f2 * y y (P V y xy y x

=O + (R1 ) e (3. 19)

where the phase is successfully eliminated from a,.  Differentiating (3.19)

gives

iI5- I )+I5(Md) e- { kCwU) (A- 2kw J(A- + i(WV) A~
xy x xy

+ 1GWv) -k~iiV)A()

+

+ 2i(aV) + 2i(, V) + [(p - V2 )4 3x
x y xy yx

-(UVp ) - (IJV } )
* x xyy x

SLo + (R) e (3.20)
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(3.13) is then given by

o(C + U) + [,(C + U)j - ikc(Cg + U)

+i a2k 2 DIA' +
2  a

+ I (WU)x - ikLwU } - iP2M-

SP1

+ -- ( - m = 0 (3.16)

The term { } will be cancelled by leading order contributions from P2M .

Substituting for 7 using (3.11) gives

C + U 22 w

9 x
gu( x

( +U.) X + 2 ( U) x + •iP e

+ P 3(4)e - i  (3. 17)

The right-hand side remains to be simplified. Note that

I I

=y Y + ip e (3.18)
a 

;y

Also, terms in

iP 2 (H ) - -- (Mi )
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'A

We will use a local phase and amplitude according to

= - g e; P f k(x,y)dx - wt (3.11)

So that .

I I

ig [( A-) + ik(A - ]eiP ik4 at lowest order
ax x

1/2
Expanding (3.8) and multiplying by y gives

+ y - /k )MO - Pl(t;' /2ky) MO

+ (Mi) - iP2M4 - ik'y( - i(P 2 - P 1)N (3.12)

Note that P2 - P1 = 1/2 whatever the value of PI; so that

~ lPy1 -

S y iky N4 + 1(M4) - ip 2 (x)

ak x k(p U 2))
- P 2 () = 0 (3.13)

k 2k(p- U)

Define: 2
k (k(p U))

2 2 X(3.14)
k 2k(p -U)

k U

And note that

y = kp - kUU = a(C + U) - WU (3.15)
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(UV) A, (UV)xAy, UV Axy x y xy

will be dropped.

Finally, a reference phase function is defined according to

f k(x)dx - wt (3.6)
x

where

k(x) = f k(x,y)dy/ f dy (3.7)

yl YI

is the average of the linear wave number over a y-coordinate grid row. We now

proceed by reducing (3.1) to a usable form.

Denote k(p - U2) = y. Then, (3.1) may be written as

a 1/2 -1 /2 PM__(Y / , + (k-ly M )- :

1/2 - 1/2 "" '

= iky + iY P 2(M ) (3.8)

Denote M i = M p + N *, where N are the localized nonlinear and dissipation

terins. Then

2S

= (2wkU + iwV'U' + 2iwU-V + ((p -V

S

- (Uv x)y - (UVpy) x  (3.9)

N = - k 2DIAl 2 + iawp (3.10)
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gradient operator, and w represents a damping coefficient due to the presence

of boundary layers or porous bottom damping (Dalrymple et al, 1984) or wave

breaking (Kirby, 1983). Kirby (1983) developed (3.1) with U E 0, and P1 = 1/4

in its full form and gave the numerical scheme for the large angle

approximation without currents. This chapter provides the same information

for the case of waves interacting with a pre-specified ambient current.

Section 3.1 gives the derivation of an evolution equation for complex

amplitude A based on (3.1) with PI = 1/4. Section 3.2 provides the finite

difference form of the evolution equation using the Crank-Nicolson

approximation.

S

3.1. The Parabolic Equation for Waves on Currents

As a first step, the parabolic equation for ; is developed. Several

simplifying assumptions will be employed. First, nonlinear terms and

dissipative terms will be considered to be grouped with the highest order

contributions in the equation, and only the largest contributions resulting

from manipulations to these terms will be retained. For example:

NS

x IAIl ) o2 k2 DIA 12 io2 k 3 DAj 2 (3.5)

IO

These terms will therefore not retain any derivatives related to the slow

spatial scale of variatLion.

Bootj (198[) drops all terms containing products of ambient velocity

comporionts. Here, these terms will be retained up to the level of second

derivatLives; i.e., terms such as

34
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Chapter 3. Large Angle Formulation for the Wave-Current Model

Kirby (1983) provided a higher-order, large angle formulation of the

parabolic approximation for waves on currents, following the original work of

Booij (1981). The governing equation for the value of the velocity potential

at the mean water level is given by Kirby (1983) as

1/2 P[M1k(p -u 2 1/ (1 + ?)
2,)2

k-(p - U )

1/2 P2M

ik[k(p - 2) 1 - 2 (3.1)k2(p -U 2

where

p = CC (3.2)g

PI = P2- 1/2 = 0 or 1/4 (3.3)

and

M' = (2kJ + iVhU + 2i

(U x y - (UV ) + [(p - 2 y y

2 2 2'
- ok2D\IA2 + iow (3. 4)

The choice PI 0 rodnces the model to the lowest order approximation of

Radder (1979) or Kirby (1983,1984). The choice Pi = 1/4 gives the higher

order approximation proposed by Boot i (1981). Finally, U1 = (UJ,V) represents

the ambient current In x an(i y coor!i nat es, Vh represents the horizontal

33



i+lI 1+ 1' Here, the unknown A. is given by the last updated value of A. in theJ J

*iteration procedure. Chapter 4 describes how wave breaking is incorporated in

the specification of the dissipation coefficient w.
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Chapter 4. Modelling Waves in Surfzones and Around Islands

4.1. Introduction

In recent years, the parabolic equation method for wave propagation has

seen a rapid development in the context of predicting surface water waves over

areas of variable bathymetry, including both the effects of refraction and

diffraction. The original development of the model was based either on a

splitting of the elliptic mild slope equation of Berkhoff (1972) into coupled

equations for forward- and back-scattered wave motion, as in Radder (1979), or

on direct perturbation expansion of the governing equations using the WKB

formalism, as in Liu and Mei (1976). Recent extensions of the capabilities of

the parabolic method include the modelling of wave-current interaction (Booij

(1981), Kirby (1984)), iterative calculation of the reflected wave field (Liu

and Tsay (1983)), and the inclusion of lowest order nonlinear effects in the

Stokes wave formulation (Kirby and Dalrymple (1983, 1984), Liu and Tsay

(1984)).

An advantage of the parabolic method over solution techniques for

elliptic and hyperbolic equations is that no downwave boundary condition is

needed for the solution of the initial boundary value problem. However, in

applications of wave models to coastal areas, accurate modelling of the

behavior of waves in the vicinity of a physical downwave boundary consisting

of an actual coastline or an offshore island is of primary importance to the

prediction of known physical effects such as wave-induced runup, longshore

currents and scour.

Wave breaking in the surf zone is a complex, highly nonlinear

phenomenon. It is obvious that the parabolic equation method, which is

limited to the representation of linear or weakly nonlinear wave fields, is
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basically incapable at present of representing the underlying physics of the

*breaking process. However, some progress can be made by shifting our view of

the model from its physical basis to its use as a predictive tool.

The forces leading to the generation and maintenance of setup and wave-

induced currents depend on a physical balance between gradients of excess

momentum fluxes, pressure forces due to changes in mean surface elevation, and

bottom shear stresses. The role of a wave model in determining the balance

4 consists of predicting the local wave energy density and direction of

propagation of the wave field. Thus, as a lowest approximation of the overall

physics, it suffices that the wave model be able to predict the local wave

amplitude in the breaking zone with some degree of reliability.

The simplest model of wave decay in the surf zone, the spilling breaker

model, is based on the assumption that the ratio of wave height to local water

depth has the same value everywhere in the surf zone as at the breaker line.

This assumption has been used extensively in the literature, from predictions

of setup (Longuet-Higgins and Stewart (1963)) and longshore currents (Longuet-

Higgins (1970)) up to the latest applications of numerical refraction schemes

to the study of wave-induced circulation over arbitrary bottoms (e.g.,

Ebersole and Dalrymple (1980)). However, it has long been known that breaking

waves, especially of the plunging type, do not follow so simple a rule.

E.tensive model tests of normally incident wave trains breaking on laboratory

beaches have shown that the pattern of wave height decay across the surf zone

is strongly a function of the beach slope. Representative measurements of
I

Horikawa and Kuo (1966) are shown for example in Figure 4. 1 in comparison to

their dissipation model.

The purpose of the present study is to relate an empirical model of surf

zone wave enery decay to the dissipation coefficient w of the dissipative
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and Kuo, 1966).
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wave model of Dalrymple, Kirby and Hwang (1984), and to detail the application

of the model to the prediction of wave height in the surf zone. Here, the

model of Daily, Dean and Dalrymple (1984) is used, although any of the related

models for dissipation in bores could be applied just as well (Horikawa and

Kuo, 1966; Divoky et al, 1970; Battjes and Janssen, 1978, for example).

4.2. The Energy Decay Model

Daily, Dean and Dalrymple (1984) have proposed that the decay of energy

flux with distance in the surf zone is proportional to the excess of energy

flux over a stable value, given for waves propagating shoreward in the x

direction by the relation

x (ECg) = - (ECg (ECg s (4.1)

where h is the local water depth and K is a constant to be determined, which

is related to the rate of energy decay. The quantity (ECg)s is the "stable"

2energy flux for a broken wave in water of depth h. Here E is 1/8 pgH , H is

the local wave height and C, = (l + 2khi /2 where P is the fluid density,
sinh 2kh)/

g is the acceleration of gravity and k and h are related by the dispersion

relationship, W 2 = gk tanh kh. Here w = 27/T, where T is the wave period.

Dally et al. show that this model of wave energy decay is analogous to the

energy loss in a hydraulic jump. The stable energy flux may be related to the

height obtained asymptotically by a wave propagating over a flat bottom or a

plane slope. Measurements by Horikawa and Kuo (1966) indicate that a value of

[is = 0.4 h is approached for waves breaking on a plane slope. In the

following derivation, we denote (H/h)s = y, where y is an empirical constant.
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Equation (4.1) may be related to a wave energy equation for dissipative

motion after assuming a time-steady wave field. For normally incident waves,

the energy equation becomes

aq

ax (ECg) = -WE (4.2)

Noting that C - C,, W may be written as
gs

KC E KC H

--h' - E) - (I ) (4.3)h h H

where H = 21AI, and A is a generally complex measure of wave amplitude and

phase.

For a plane beach with slope s, and neglecting the effect of setup (which

is not calculated by the wave model directly), a simple analytic solution of
S

(4.1) was obtained by Dally et al. Their comparison to laboratory data of

breaking waves shows that this model very successfully represents wave height

decay across the surf zone. This analytical model will therefore be used for

comparison with the numerical model. Defining a = K/s, the wave height in

dimensionless form is related to the local water depth by:

2 2 a-5/2
= h[(i-A)(- + A] c 5 (4.4)b b hb"

where

21 H
a-5/2 = (at breaking) (4.5)

b

and
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I0

2 2 ?
2h2 Zn (4.6)= [1t - -'K n ]

b b b

Based on comparisons to the laboratory data of Horikawa and Kuo (1966),

Daily et al. chose the value K = 0.15. The special case a = 5/2 then

corresponds to a beach slope s = 0.06. Results for a range of a values of

I < a < 10, corresponding to the range of beach slopes 0.15 > s > 0.015, are

given in Figure 4.2 for y = 0.4, K = 0.78. The lines labelled I and 2

correspond to the constant decay H = Kh = 0.78 h and to the stable wave height

Hs = yh = 0.4 h, respectively. The effect of beach slope, s, is clearly

apparent. For mild slopes, a is large and the wave heights across the surf

zone are much less than given by the spilling breaker model, while, for steep

beaches, a is small and the wave heights exceed the spilling breaker model

(H = <h) heights. The paper by Dally et al. contains an extensive comparison

between these results and the data of Horikawa and Kuo (1966).

4.3. Application of the lodel in the Parabolic Equation Method

The results (4.4-6) provide a check for determining the accuracy of

iterative schemes using the wave damping term (4.3). Noting that H. = yh and

H 21A1, (4.3) may be written as

W = -- h (4.7),KG 2)

41Al

Aq,+;umjn}r Lh:it the reflected wave (in the minus x direction) is small, we use

the ;)irho tIc equation given by (3 28) to obtain

1 "1

Ax - i(k-k )A + -C- * A - 2C (CC A ) + wA 0 (4.8)

where we have neglected currents and nonlinear effects.
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Subscripts x and y denote differentiation. Here, A(x,y) is the complex

amplitude of a steady wave train

i(kox - ut)'

n(x,y,t) = Re{A(x,y) e } , (4.9)

ko is a reference value of the wavenumber based on a constant water depth

which is characteristic of the domain, and

W = = (l - 2 (4.10)
2C 2h 2)A

g

L

Here we choose a real value of w in contrast to the results for boundary layer

damping (Liu, 1984), since the wave breaking process would not be expected to

distort the wavelength in the same manner as a small dissipation due to

viscous effects. Equation (4.8) is written in finite difference form

according to the Crank-Nicolson methed:

1+1 i
A. -A I i+1 i+l i iAx - 2 [(k. -ko . + (k -k) A.J

Ci+_ C i i+I i (CC A ) I (CC A) i
g 1. A. + Ai g Y v. + g y y

C C,) - C C

1 t 4-l + 1 1 I. - -
+ 2 w. A. + w.A.j 0 (4.11)I I .I~

where' v-derivitive terms are given by
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(CC + cc i)(A -A) (cc + cc )(A.-A_ 3

(CC A) g+l gy + g. gj- (4.12)

g Y Yj2(Ay) 2

and where

2

i+l K y2(h.~l) "".(4

w. 2h.- J 2 (4.13)

-i+ I
The intermediate value A. is provided by information on the starting gridI3
row according to

~i+l iA. -A.

S- L (kU- k )+1 (k'- k )A-]
4 A0]2J 0]

i+ I ~ i
(Ci*4 - c 3 -i+1 i (cc A ) (cc A ) Y
g. g. A. A. . gyY. g y y

+ JA [ I~~ + I I -L- [. I+ -+
4x LC i+I C w C i+IC

g. g. gj.g

:1 ::

I i+l -i+l
+2 w. A. + wAl)= 0 (4. 14)1 1]

where 2

K ( ( 2(Ai+I 2

+2hi+1 h> or already breaking
w = h 41A 1 1 (4.15)

0 h <  or not yet broken

h 2

If waves are unbroken in all j grid blocks, w is set equal to zero and the

scheme proceeds based on equation (4.14) with no second iteration.

56



-. - -~-~ - - ----- ~.-~ ~ ," -

4.4. Normallv Incident Waves on a Plane Slope

Several cases were run for waves starting in a depth of 2 m and

propagating directly towards shore over a plane slope. The program checks at

each step that the wave height has not exceeded the breaking criterion. When

H becomes greater than Kh, the program begins calculating values of the

damping coefficient (4.15). Breaking continues until w falls to a value of

zero, which does not occur on the plane beaches studied here but would be

expected to occur readily for waves propagating over uneven topography. For

each case examined, the wave height was assumed to be 1.0 m at a depth of 2 Mi,

and wave period was assumed to be 5 seconds. Values of a = 1, 3, and 10 were

tested using various computational grid spaces Ax. Results for a = I and

Ax = 0.2 m and 1.0 m are shown in Figure 4.3, a = 3 and Ax = 1.0, 2.0, and

5.0 m in Figure 4.4 and L = 10 and Ax = 2.0, 5.0 and 10.0 m in Figure 4.5.

The exact solution (4.4) is included in each figure for comparison, with hb

being taken as the average of the depth at the last grid point before breaking

and at the first grid point after breaking. In each case, the numerical

resiIlts provide an adequate representation of the exact solution.

4.5. Application to Offshore Islands

Due to a complex combination of wave breaking, refraction and

diffraction, the wave field in the vicinity of an offshore island, either

natural or man-made, is extremely complicated. For pure refraction Pocinki

(1950) has provided a solution, and for nonbreaking waves Jonsson et al.

(1976) and Smith and Sprinks (1975) have developed solutions which include

refraction and diffraction. However, an island will generally possess a surf

zone and the sh:idow zone created behind the island will persist for longer

distanceq than for the nonbreaking wave case due to loss of energy near the
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Downwave of the breakwater, the transmission coefficient is given by

kT = IA(x,y)l. In Figure 4.9a,b, several contour plots of kT are provided for

breakwaters with dimensionless widths of kk = 5 and 107T. Contrary to the

situation shown in Penney and Price (kU = I0, their Figure 7) which neglected

the interaction between the diffraction patterns from each end of the ....

breakwater, the minimum value of kT does not occur directly behind the

breakwater but off to each side along a parabolic curve due to the development

of a short crested pattern of intersecting waves in the lee of the breakwater

or island.

As a non-conservative measure of the extent of the shadow behind an

island, we will use the centerline value (y = 0). Figure 4.10 shows kT

vs. ---. From the figure the transmission coefficient increases

asymptotically to unity for large x as the waves diffract around the island.

As an example, at a distance given by kx = (9.3 ,kk) the wave height

recovers to 90% of its original value. Expressing x in terms of the width of

the island, x = x902Z, where x 90 is the dimensionless distance to the point
2

where 90% of the original amplitude is recovered, we obtain x90 = [Q ]kZ......

The distance x90 depends on the relative size of the island width to a

wavelength; the wider the island the longer it takes for the wave height to

recover. Note that for kT = 0.75, the distance is far shorter, x = x7 5 (2Z)

_ (3.32)2 k(2Z), which is about 8 times closer to the island. In practice, a
21T

factor of two or three should be applied to x, since, as shown, the minimum

value of kT is not directly behind the island.

4.7. Conclusion

A method for including the effect of wave breaking in parabolic models

for combined refraction and diffraction has been developed and shown tc give

good agreement to laboratory results for wave heights acr, the surface.
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the model to the other, instead of infinity. For simple geometries,

. ianalytical solutions are available as a third way to compute the far-field

wave heights. This latter course is chosen here to examine the waves behind

an island approximated by an offshore breakwater.

By superposing the solutions of the LaPlace equation for normally

incident waves propagating past a half-infinite breakwater, Penney and Price

(1950) showed results of the transmission coefficient for an island with a

width of 10 wavelengths. A similar superposition was done by Liu and Mei

(1976) using a similar parabolic equation to the one treated here. An island

with a small width to length ratio was examined by Mei and Tuck (1980). Here

we develop an exact solution of the parabolic approximation for the normally

incident wave field behind a short breakwater, in order to approximate the

effect of an island totally blocking the incident wave. The solution is

provided in Appendix II.

Defining a = /k/x (y+Z) and 6 = /k/7Tx (y-i), where k is the wave number

of the normally incident wave, 2Z as the width of the breakwater, and x as the

downwave direction, the normalized wave amplitude is

A(x,y) = 1 - [C() - C(B) + i(S() - S(a))] (4.19)

where C(x), S(x) are the Fresnel cosine and sine integrals:

2

C(x) = f cs(ITt /2)dt (4.20)

0

S(x) = f sin(Tt 2/2)dt (4.21)
0 ,
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_ j
1+ 1 i+ 1 1+ 1 1+ 1

A*j j-I (1-2a)A + aA+ (4.17)

where a was taken as 0.2. This filter successfully eliminated noise but

interacted with the breaking wave model to the extent that the overall form of

the solution differed. Instead, we employ a scheme in which the model

searches for anomalously large values of A occurring along grid rows with a

contracting surfzone and reduces the large values in magnitude to a value

equal to the water depth. The plots in Figures 4.6-8 present unfiltered data

in order to give an idea of the magnitude of the remaining noise and its

effect on the overall contours.

4.6. The Far-Field of the Island

The persistence of the shadow in the wave field behind the island is

often an important variable, particularly when siting an island near developed

shorelines. In order to determine the wave field many wave lengths past the

island, several procedures may be followed. First, the model can be run for

longer distances than shown in Figures 4.6-8. Alternatively, the numerical

model can be used as input to an analytical model, resulting in a hybrid

model. This can be done using a convolution integral developed in the

Appendix to determine A(x,y) over a region of constant depth.

2/ 2 k i k-  (x- )_
A(-;,) ×k. 4 f f(x )e d (4.18)

where f() is the variation of A(x,y) along x = , the last grid row in the

numerical model. This integral is limited, of course, to the width of the

numerical model and hence the integral is taken from one lateral boundary of I
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0

* where hb is the maximum height of the conical island above the bottom and XA

and YA are the semi-major axes of the ellipse measured at the bottom. The

island's beach slopes vary with position around the island; but on the semi-

major axes, it is hb/XA and hb/YA.

For the computations, hb = 20 m and XA and YA vary. The incident wave

has an amplitude of I m and a period of 10 seconds. The wave direction is

assumed to be along the x-axis and the problem is symmetric about the x-axis,

so only half the wave field is computed for this case. Figures 4.6, 4.7 and

4.8 show contour plots of the instantaneous water surface and the transmission

coefficient around a nearly circular island (XA = 60, YA = 80 m), a wide

island (XA = 60, YA = 160 m) and a long narrow island (XA = 160, YA = 60 m).

From the figures, which show approximately four wavelengths, it is clear that

the shape of the island is extremely influential on the wave field behind the

aisland, with the island with the smallest aspect ratio creating the smaller

shadow. Additionally, the presence of the island creates a "bow-w;ave"-like

disturbance which spreads laterally in the downwave direction. The refraction

of the waves on the front side of the island creates a region of high wave

height on the shoulders of the islands for all three cases. Further focusing

of the wave behind the island occurs due to refraction by the island's

* bathymetry.

In practice, the shift from broken wave amplitudes to unbroken wave

amplitudes along a y-grid row introduces a numerical discontinuity in the

* solution. This discontinuity introduces noise in the computed solution which

then propagates into the downwave region. The noise is manifested as a stable

Nyqtiist-waventimber oscillation with an amplitude of about one to two percent

of the initial wave amplitude. An attempt was made to numerically filter the

oscillation during model calculations by the use of a dissipative interface in

the surfzone on the updated row:
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island boundary. Several numerical (two-dimensional) examples of waves in the

vicinity of islands have been computed here using Eqns. (4.11) and (4.14) and

including wave breaking.

The inclusion of dry shoreline boundaries or vertical walls in the

c-npitationail domain of a wave model generally requires a modification of the

'Iv-ti which can include the specification of stair-step boundaries in the

: cimpitcated obstacles. However, if the surface-piercing obstacle

,';qi-;t of a sloping structure which is expected to be surrounded by a

-ou'vf e, a major simplification may be introduced. By replacing the surface-

pierci:g Island by a shoal with a flat top and covered by a thin layer with a

depth on the order of a centimeter, the entire island area may be included in

the unmodified computational grid. In this "thin film" model, wave breaking

then reduces wave height across the surfzone to a small value at the "real"

sioreline, after which further breaking reduces the height of a wave

pron:itating over the island to approximately y times the film depth. This

wave is transmitted beyond the island and plays no role in the downwave region

due to its small height. This approach alleviates the need for internal grid

boundaries unless reflective structures are to be included.

The islands in the present computations have an elliptical planform, and

are located in water of constant depth ho = 10 m. The depth contours of the

islands are given by

hb (.A)+( + h0
A o

2 ?

h for ( + 7 < 1 (4.16)
A A

h ;For (X) + 1
A A
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The "thin film" model provides a convenient means to predict the wave

heights in the vicinity of an island without the computational necessity of

including internal boundary conditions to the model. Islands are treated as

extremely shallow shoals and wave breaking insures that these "thin film"

shoals produce wave patterns equivalent to those for a surface-piercing

island.

The shadow thrown by islands in the downwave direction persists for

4distances equivalent to many island widths, depending on the dimensionless
island width (k). An analytic model for constant depth is developed to

illustrate the diffracted wave field behind the island.

There exists a general absence of data on the characteristics of breaking

waves propagating either normally or obliquely over arbitrarily uneven

topography. Thus, many of the predictions of the present model are

necessarily quaiitative in nature, and require further verification which

depends on the future availability of data.

Appendix 4.1. Analytic Solution for the Constant-Depth Half-space

Over a flat bottom, neglecting dissipation, the parabolic equation for

the wave amplitude, A(x,y), behind the island is

2ik 2-A + 2 = 0

i t1 wave number. This equation may be used to extend the rcsults

..i.),y described finite-difference calculations to the farfield of

;i-nilir obstacle). The boundary condition (obtained at the

.w , -. rippititional grid) may be taken as

llln l ll ll ll" -- ....1I '



A(O,y) =f(y) ; YI

where now x =0 signifies the start of the half-space to be considered. Using

the Fourier transform pair:

A =~ e ixyd f -l A(x,X)e''y dX
A f Ax,ye -y A =

we obtain an equation in x alone,

21k 'A XA 0

where

aA(0,X) f(x) f fv)k? dv

So01ving,, Twe obtain

X x/21kA(x,X) =A(O,X)e

This solution may be used in either continuous form or in a discretized

form using FET methods to extend the finite-difference calculations. Here, we

consider a special case of a breakwater of length 2Z~ situated on the y-axis at

x = 0. For the general case of waves obliquely incident on x j , f(y) may be

written as

0; y[9

f(y)=

e OYIyI>z
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where X. is the y-component of the wavenumber vector

A= ksine

Transforming f(y) gives

2sin(X -X).
A(O,X) = 2r6(X - ) - oo (Xo-A)

where 6 is the Dirac delta function.

Taking the inverse transform of A gives

i 2sin(X o-X)Z - ix 2 x/2keix
A(x,y) = f [26(X -X) - e dX

27T o (X -)~0

-iA 2x/2k fo 2 xiA ) 2
o -i/4 f o ik(y- )/2x
0 0e _ - e e ee

where the first term represents an undisturbed, obliquely-oriented plane wave

and the second term contains the disturbance due to the breakwater. Setting

Xo equal to zero (normal incidence) and introducing the definitions of the

Fresnel cosine and sine integrals yields equation (4.17). The solutions

obtained using the parabolic approximation are similar in form to the form of

the Fresnel approximation in optics.
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